Autor: Peter Pančík
Publikované dňa:
Citácia: PANČÍK, Peter. 2016. Biopedia.sk: Bioenergetika bunky. [cit. 2023-11-28]. Dostupné na internete: <https://biopedia.sk/bunka/bioenergetika-bunky>.
Metabolizmus je súbor reakcií prebiehajúcich v bunke (organizme) zabezpečujúci premenu látok pri (i.) získavaní energie, (ii.) tvorbe potrebných látok a (iii.) odbúravaní nepotrebných látok, (iv.) výmene látok s okolím, (v.) raste a (vi.) rozmnožovaní. Nie je chaotický a náhodný proces, ale časovo a priestorovo zosúladený sled reakcií. Podstatou metabolizmu je regulovaná vysoko-špecifická katalýza biochemických reakcií. Druh katalyzátora a priebeh katalýzy závisí od úrovne organizácie živej hmoty a od druhu organizmu: úroveň bunky = enzýmy, vyššia úroveň = hormóny, nervová a imunitná regulácia.
Rozlišujeme dva základné stupne metabolizmu:
- Primárny metabolizmus je súbor metabolických procesov rozhodujúcich pri získavaní energie (oxidácia sacharidov a lipidov) a pri reprodukcii základných stavebných zložiek bunky (replikácia nukleových kyselín, proteosyntéza, biosyntéza bunkovej steny).
- Sekundárny metabolizmus je súbor metabolických procesov, ktoré nadväzujú na primárny metabolizmus (metabolizmus antibiotík, pigmentov, alkaloidov).
Podľa toho, či pri metabolizme dochádza k rozkladným alebo syntetickým reakciám, rozlišujeme dva deje:
- Katabolizmus (disimilácia) zahŕňa reakcie, pri ktorých dochádza k štiepeniu látok. Pri tomto procese prebiehajú exergonické reakcie, pri ktorých sa energia uvoľňuje. Patrí sem napr. trávenie (rozklad zložitých látok na jednoduchšie) a dýchanie.
- Anabolizmus (asimilácia) zahŕňa reakcie, pri ktorých sa tvoria zložitejšie látky z látok jednoduchších. Tieto procesy vyžadujú prísun energie, jedná sa teda o endergonické reakcie. Patria sem deje spojené s fotosyntézou (tvorba cukru z CO2), proteosyntézou (tvorba bielkovín z aminokyselín).
Každý organizmus a každá bunka uskutočňuje dva základné druhy metabolizmu:
- Látkový metabolizmus zahŕňa príjem, premenu a výdaj látok. Z tohto hľadiska je najdôležitejšie, aký zdroj živín, resp. uhlíka organizmus využíva pre svoj život.
- Energetický metabolizmus zahŕňa príjem energie, jej spracovanie na využiteľnú formu a výdaj nespotrebovanej energie. Bunka vie pre svoje potreby využívať iba chemickú energiu, ktorú vie transformovať na iné formy energie (napr. teplo, kinetickú energiu, svetelnú energiu - bioluminiscencia).
Na základe nárokov na zdroje živín a energie z prihliadnutím na uvedené druhy metabolizmu môžeme organizmy rozdeliť na štyri hlavné skupiny:
zdroj uhlíka | svetlo (zdroj energie) | anorg. látky (zdroj energie) |
CO2 | fotoautotrofné (sinice, riasy, vyššie rastliny) | chemoautotrofné (niektoré skupiny baktérií) |
organické látky | fotoheterotrofné (niektoré baktérie a riasy) | chemoheterotrofné (väčšina baktérií, huby, prvoky, živočíchy) |
Základy energetického metabolizmu link
Získaná energia sa akumuluje v makroergických väzbách (označujú sa vlnovkou), najčastejšie fosfátových väzbách v niektorých látkách (makroergické substráty). Najbežnejší je ATP (adenozíntrifosfát, adenozín-3P) a jeho analógy GTP (guanozín-3P), CTP (cytidín-3P), TTP (tymidín-3P) a UTP (uridín-3P). Skladajú sa z troch zložiek: dusíkatej bázy (A, G, C, T alebo U), ribózy a troch zvyškov kyseliny trihydrogénfosforečnej. Takže môžeme napísať:
NTP = N – Ribóza – P ~ P ~ P
ATP sa nazýva aj "energetická konzerva" alebo "univerzálne energetické platidlo". Tvorí sa v mitochondriách, kde prebieha citrátový cyklus (cyklus kyseliny octovej, Krebsov cyklus) a oxidácia mastných kyselín. Spotrebúva sa na rôznych miestach bunky. ATP nemôže prechádzať z bunky do bunky. Na dlhodobé uskladnenie energie slúžia tuky a cukry (škrob u rastlín, glykogén u živočíchov).
Energia sa z ATP uvoľňuje hydrolytickým štiepením.
ATP + H2O = ADP + H3PO4 + 50 kJ (energia)
Chemickou reakciou fosforyláciou dochádza opačnému procesu - zvyšovaniu počtu zvyškov kys. trihydrogénfosforečnej. Zásoby ATP sa dopĺňajú substrátovou a oxidatívnou fosforyláciou (spojené s dýchaním) alebo fotofosforyláciou (fotosyntéza).
Časť chemickej energie, ktorá sa pri premene ATP uvoľní a bunka je schopná ju využiť (konať prácu) sa nazýva voľná energia. Pri každej premene sa časť premení na teplo, ktoré bunka vyžaruje do prostredia.